Friday October 15, 2010
3 PM
PHO 901

Add to Calendar Add to Calendar

"Co-opting Moore’s Law: Vaccines, Medicines and Biological Particles Made on a Wafer"
Joe DeSimone

In 1965, Gordon Moore, co-founder of Intel, described the trend that the number of components in integrated circuits had doubled every year since 1958. This trend has continued to today, enabled by advances in photolithography which has taken the minimum feature size of transistors down from about 10 microns in 1970 to 0.045 microns (45 nm) today. In biological terms, this corresponds to going from the size of a red blood cell to the size of a single virus particle! As such, this top-down nano-fabrication technology from the semiconductor industry is, for the first time, in the size range to be relevant for the design of medicines, vaccines and interfacially active Janus particles. This lecture will describe the design, synthesis and efficacy of organic nano- and micro-particles using a top-down nano-fabrication technique we developed called PRINT (Particle Replication in Non-wetting Templates). PRINT is a continuous, roll-to-roll, high resolution molding technique that allows the fabrication of precisely defined micro- and nano-particles in a continuous manner with control over chemical composition, size, shape, deformability and surface chemistry. Examples to be described will include the design of PRINT particles useful as vaccines (influenza, H1N1, pneumo), targeted chemotherapy agents, anti-bacterials, inhalation therapeutics and even as an entirely new class of particle-based surfactants.

© 2007 Trustees of Boston University. All rights reserved.  |  Last modified April 16, 2007 at 12:00 AM EDT